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If we now consider functions of t;, £, P;, and P, sug-
gested from classical analogs, symmetric with respect to
interchange of I and II, which can be expressed as power
series of terms of which Eq. (A 14) is an example, the matrix
elements in the two-body subspace can be written as

(e 0y |V (B, Py, Py irsry)
= V(rr, — ifiV,, — ifiV,)(ryry|r5r,). (A16)
It should be noted that the classical functiong that sug-
gest the form of the operator function V (f,, §,;, P;, Py, } are
required to be symmetric with respect to interchange of I
and II in the positions coordinates alone and in the mo-

menta coordinates alone, which insures the overall symme-
try with respect to an exchange of I and IIL.
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Equations for classical electrodynamics in a universe with two space dimensions may be derived
directly from those in three space dimensions by beginning with the 3 + 1 space-time
formulation. In 2 + 1 space-time the electromagnetic field tensor has three independent
components corresponding to two components of the electric field and one component of the
magnetic field. Several applications of the general equations are discussed.

Recently, Dewdney' has discussed physics in a universe
with two space dimensions. While the task of solving prob-
lems for such a universe may be largely recreational, their
solution may serve a more practical purpose by suggesting
technological innovations with applications in the three-
dimensional world.

In addition, the study of physics in a universe with one or
two space dimensions can provide a set of pedagogical exer-
cises that may be useful to both instructors and students by
elucidating some of the features of the usual physics of our
universe with three space dimensions. In particular, it may
be possible to obtain insight into the structure of classical
electrodynamics by considering the electrodynamic equa-
tions and a number of familiar problems in a universe with
only one or two space dimensions.>

The purpose of this note is to formulate the equations of
classical electrodynamics in two-dimensional space. The
Maxwell equations and other relations that are required
are obtained by assuming that the usual 3 + 1-dimensional
space-time formulation of electrodynamics may be re-
duced to a 2 + 1-dimensional space-time formulation by
setting z=0. All derivatives with respect to z also vanish.
The equations of classical electrodynamics in one-dimen-
sional space are obtained similarly in the Appendix.

Following the formulation in 3 4 1-dimensional space-
time, the electromagnetic field tensor is defined as

F, =d8,4,—-9d.4,, (1)
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where 4, are a set of potentials, d, are partial derivatives,
and the indices have the values u = 0,1,2.

Asin 3 + 1dimensions F,, is antisymmetric. Thus there
are (3X3 — 3)/2 =3 independent components of F,,.
These correspond to an electric field with two components
and a magnetic field with one component.

The Maxwell equations are

d,F,, =2unJ,, (2)
d,F, +d,F, +d,F, =0, (3)
where the three components of J, are two currents and one
density. In component form Eq. (1) is
E, =3d4,/3t — 3¢ /0x, (4a)
E, =0A4,/3t — 3¢ /3y, (4b)
B =04,/dx — 34, /dy. (4¢c)
The Maxwell equations in component form are
dE, /3y — OE,/dx = (1/c)\0B /3t, . (5)
JE,/dx + 3E, /dy = 2mp, (6)
OB /dx = —(1/c)3E,/dt — (2m/cW,, (7a)
AdB /3y = (1/c)IE, /3t + (2 /c),. (7b)

One may write down immediately a variety of other rela-
tions that hold for two-dimensional electrodynamics. The
equation of continuity,
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a.J, =0, (8)
becomes in component form

aJ,/9x + 87, /dy + dp/dt = 0. 9

The potentials satisfy wave equations

0’4, = — 2a/cV,, (10)

where [ = V2 — (1/c})3%/at>.

In the absence of charges and currents the fields satisfy
free wave equations:

0%F,, =0. , (11)
Hence there are electromagnetic waves in two-dimensional

space that travel at a speed c.
The Lorentz condition is

a4, =0. (12)
One may define an energy—momentum stress tensor
T,, =(\27)[F,F,, +(1/3)8,.F, F,] (13)

This tensor is symmetric and therefore has six independent
components. These are

T,, = BE, /27, (14a)
T,,= —BE,/2m, (14b)
Tow=I(E.+E} + B?/4nm, (14¢)
T,=E.E,/ 1Inm, (14d)
T, =(E;—E}) 2w, (14¢)
T,=T,. (14f)
The divergence of 7,,, equals the Lorentz force density
2.1, =/, (15)

In component form Eq. (15} includes a statement of con-
servation of total energy:

J(BE dBE,
ou < MBE) BB _ gy +EJ) (6
at 2r  dx dy
where the energy density is given by
u=(E%+E2+ BY/4r. (17)

Equation (15) also contains a statement of conservation
of total linear momentum. The field linear momentum den-
sity is proportional to the “Poynting vector” given by

S, = (c/2mBE,, (18a)

S, = (c/2m)BE,. (18b)

The angular momentum density, which is a scalar quan-
tity in two-dimensional space, is given by

L = —(1/27)\xE, + yE,)B. (19)

The motion of charged particles in electric and magnetic
fields is obtained from the equation

mdU,/dr = (q/c)F,,U,, (20)

where m, is the rest mass of the particle, U, is the “three-
velocity,” and 7 is the proper time. In component form Eq.
(20) yields the Lorentz force

F, =q(E, +v,B/c),

F,=4q(E, —v,B/c),
and the energy equation

de/dt =q(E, v, + E,v,), (22)
where € = myc’y is the energy of the particle and

(21a)
(21b)
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y= (l _ UZ/CZ)_Hz.

If E, =E, =0 and B = const in Eq. (21) the charge
moves in a circle with a frequency @ = ¢B /mgyc.

A velocity selector may be built by sending a beam of
charged particles through “crossed” electric and magnetic
fields. There is no deflection if

v/c=E/B. (23)

An amusing problem that resembles the motion of a
charge moving in the field of a magnetic monopole may be
solved completely. The three-dimensional motion of a
charge in a magnetic field has been discussed by Lapidus
and Pietenpol.® A two-dimensional monopole field would
be expected to have a 1/r dependence. Thus one may com-
pute the orbit of a charge in a scalar magnetic field,
B =g/r, where g is the “monopole” strength. The equa-
tions of motion are

my, = (g/c)Bv,, (24a)

mv, = (q/c)Bv,. {24b)

It is clear that circular orbits satisfy Eq. (24), since in this
case B (7) is a constant along the orbit. The frequency is
given by w = gB /mc = (qgg/mc)/r. Hence, for any r the
speed is a constant

v = v, = qg/me. (25)
This result may also be obtained by multiplying Eq. (24a)
by v,, Eq. (24b) by v,, and adding. Since v, = v cos@,

, = v siné, Eq. (24) becomes

6= —uy/r. (26)
The angular momentum of the charge is given by
I=mrl= — muy, (27)

which is not constant.
The general motion may be obtained as follows. In polar
coordinates Eq. (24) may be written as

F—rf? =y,

200 +rf = —vyi/r.

Equation (28b) may be rewritten as
d(r*6)/dt = — vy, (29)

which integrates to Eq. (27).
Substituting Eq. (27) into Eq. (28b) one obtains

(28a)
(28b)

F=0. (30)
Integrating Eq. (30),
r=r;,+ut, (31)

where 7, and v, are the initial position and velocity. Substi-
tuting into Eq. (26) and integrating

0= —uvy/v; In(l +v;t/r;). (32)
Thus the orbit is given by
r=r; exp( —v,0/vy). (33)

The general motion is a spiral that is outward or inward
depending upon the sign of v;. If v; = 0, the radial coordi-
nate is a constant and 8 varies linearly with ¢. Then the orbit
is a circle with fixed speed. The period of the orbit to pro-
portional to the radius, i.e.,

T = 2wr/v,. (34)

It is interesting to note that the period of a charge mov-
ing in a circular orbit in a two-dimensional “Coulomb”
field satisfies a relation similar to Eq. (34). In two dimen-
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sions the force between two charges is inverse linear.
Hence,

qQ /r = mv*/r. (35)
Then

v¥'=qQ/m (36)
is a constant for this problem also. Thus

T =2mm/qQ)"?r. (37)

If the periods in Eqgs. (34) and (37) are equal, v = v, and

g =(Q/gmc’. (38)

In two dimensions both ¢* and g* have the units of
energy.

One may also speculate on the nature of electrodynamics
in a universe with four or more space dimensions. If one
again assumes that the convariant equations hold in a
4 + 1-dimensional universe, one defines five potentials.
The electromagnetic field tensor then has ten components.
There are six homogeneous and five inhomogeneous Max-
well equations, and the energy-momentum stress tensor
has fifteen components.

But, what are the fields? Ina 1 + 1-dimensional universe
(see Appendix) there is no magnetic field and the electric
field has one component. In a 2 + 1-dimensional universe
the magnetic field has one component and the electric field
has two components. In a 3 + 1-dimensional universe the
magnetic field has three components and the electric field
has three components. In a 4 + 1-dimensional universe the
magnetic field has six components and the electric field has
four components. In an n + 1-dimensional universe the
magnetic field has n(n — 1)/2 components and the electric
field has n components.

APPENDIX: CLASSICAL ELECTRODYNAMICS IN
A UNIVERSE WITH ONE SPACE DIMENSION

The equations for classical electrodynamics in a universe
with one space dimension are obtained here by reducing
the usual 3 + 1-dimensional equations to a set of 1+ 1-
dimensional equations. In this formulation F,, has
(2X2 —2)/2 = 1 component. Hence the electromagnetic
field is

Fy =04/t —3¢ /0x =E. (A1)
The Maxwell equations are

JdE /dx =p, (A2)
OE /dt= —J. (A3)
The equation of continuity is

aJ /dx + dp/dt = 0. (A4)
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The potentials satisfy wave equations

0’4, = —(1/c), (A5)
with z = 0,1 and O? = 3%/dx* — 3%/t .

The field E also satisfies a wave equation

O’E =0. (A6)

The Lorentz condition is

‘34 /3x + 3¢ /3t = 0. (A7)

The electromagnetic energy-momentum stress tensor
has three independent components:

Too=T, =E?/2, (A8a)

To,=T,,=0. (A8b)

Conservation of total energy is written as

du/dt= — EJ (A9)
with

u=E?/2. (A10)

Thus

E=—J, (A11)
as given in Eq. (A3).

The Lorentz force is given by

F=gE, (A12)
and the energy equation is

de/dt = quE. (A13)

The field between two charges in one space dimension is
a constant. (This corresponds to the field of an infinite
sheets of charge in three-dimensional space.)
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